

OPAS an en-route and approach traffic fast time simulator for R&D and performance studies

Yann Le Fablec, CENA Dept. 3, RFM lefablec@ath.cena.fr

OPAS simulators family

- FTS tools developed by CENA
 - OPAS: en-route simulations
 - OPAS-TMA : designed for TMA
 - Interface OPAS/OPAS-TMA: for E-TMA
- Ocaml language
- Lightweight, modular, tools :
 - OPAS : 3700 lines (not including comments)
 - OPAS-TMA: 5000 code lines
- → easy to maintain, adapt to different concepts, test different conflict solving algorithms, ...

OPAS simulators family

- Used for Fast Time Simulations:
 - o test new concepts and new algorithms
 - use different navigation logics, dynamic choice of trajectory
 - o provide figures to evaluate performance indicators
 - if needed compute these performance indicators during simulation

OPAS

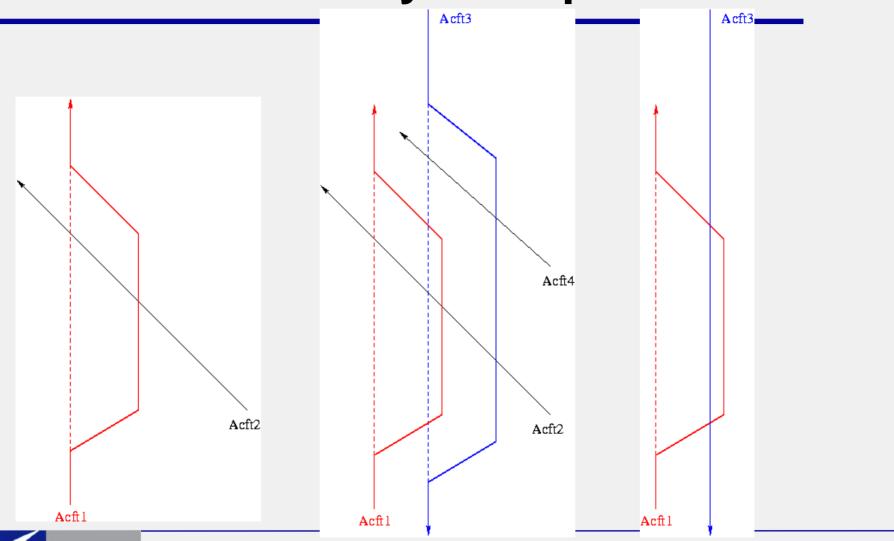
- ◆ En-route FTS, developped & used since 1998
- Input :
 - flight plans (FR, CEAC), performance model (BADA 3.5), sectors, beacons, airports, restricted areas, weighting factors (workload evaluation)
- Output recorded :
 - Sector entry/exit times, flows though sectors, conflicts (where, aircrafts involved, type, ...), ...
 - o more generally everything based on geometry
- Studies:
 - **ORVSM**
 - Distance (Radar tracks/direct routes/fixed routes)
 - MFF Project (Free-Route, ACP)

OPAS - Flexibility example 1/5

- Simulation of ASAS Crossing Procedures (ACP)
 - crossing delegation to the cockpit under certain circumstances
- Conditions of applicability:
 - some are easy to test: aircraft equipment, geometry, speed compatibility, ...
 - some require a special simulation : manoeuver remains in a given enveloppe and does not interfere with surrounding traffic
- Exemple lateral crossing

OPAS - Flexibility example 2/5

For each conflict


- o test if general conditions are met (equipment, speeds, ...)
- test ACP to evaluate if other geometrical conditions are
 OK (taking into account only the 2 concerned aircraft)
- o if tests are OK : fly with ACP

But...

- Problem because an ACP can influence other ACPs
 - multiple backtracks needed

OPAS - Flexibility example 3/5

OPAS - Flexibility example 4/5

- ◆ Idea : define a « ghost » aircraft
 - aircraft executes the ACP clearance (A1)
 - corresponding ghost flies normally along its originally planned route (A2)
 - event recording for both aircraft and links between A2 and other ACPs detected
 - if ACP complies with conditions then keep trajectory of A1 else keep A2 (ignore this ACP and cancel influenced ACPs when needed)
- This method is much more efficient that doing multiple backtracks
 - o initially: 24 hrs for a single simulation
 - o after simulation core adaptation: 30 mins

OPAS - Flexibility example 5/5

- Efficient method allows multiple simulations
 - o different traffic levels
 - 5 equipment rates
 - o different parameters for ACP conditions of use
- New elements easily recorded during simulation :
 - number of ACP
 - o types
 - Olocation
 - o geometry of the encounter
 - handover to a neighbouring sector during the execution of an ACP

OPAS-TMA

- Based on OPAS simulator, designed for TMA
- Main goal : produce realistic aircraft trajectories in the vectoring area
- Development started mid-2001
 - validated on Paris-Orly airport
 - now being used for studies (Lyon airport)
 - Roissy CDG planned
- For environment & procedures changes studies

OPAS-TMA

Input :

- o flight plans
- o performance model
- o beacons, runways, stacks, ...
- procedures (adapted from SIDs and STARs with help from controllers)

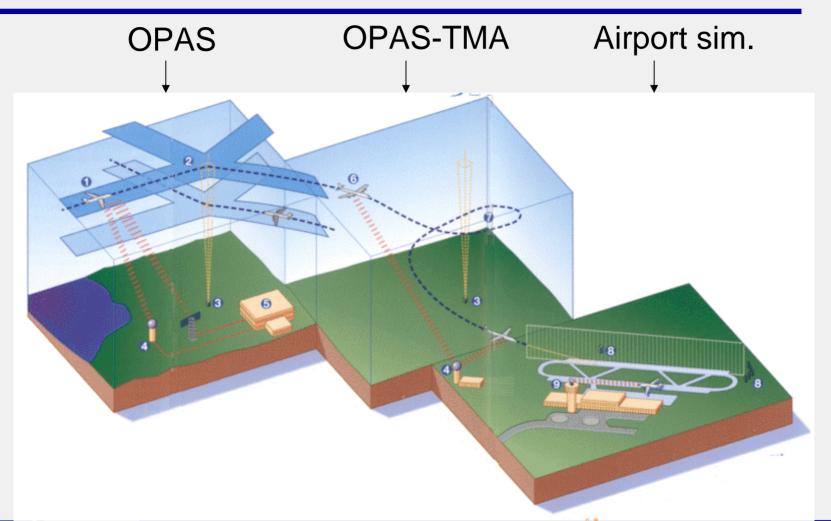
Output :

- trajectories (x, y, z, t, heading, speeds, ...)
- o statistics on flight time/distance
- number of flights that should be delayed (stacks, AMAN, ...)
- O ...

OPAS-TMA

Trajectory generation :

- based on the definition of degrees of liberty (controllers)
 - heading, speed, flight level
- needs a sequence (calculated, arrival/departure manager)
- for aircraft N choose manoeuvers according to the available degrees of liberty so that
 - > flight time is minimized
 - > no conflict with previous N-1 aircraft
 - wake turbulence taken into account when close to the runway
 - respect forbidden/compulsory volumes
- ◆ Demonstration this afternoon...



OPAS/OPAS-TMA interface

- Allow FTS in E-TMA with good precision
- Main challenge : connect two simulators having different logics
 - In OPAS, aircraft are simulated simultaneously
 - In OPAS-TMA, aircraft are simulated one after another because this is best suited for TMA
- Has been developped
- Is being tested
- 2004 : Gate2Gate = Paris area simulation (ACC+airports)

OPAS/OPAS-TMA interface

Conclusion

Code availability allows:

- o measurement of new indicators
- o efficient simulation of new concepts
- o modification of core navigation module
- testing of new algorithms (conflict resolution)

Drawbacks:

o to get the best of the flexibility, knowledge of computer science is necessary

Other limitations :

o no graphical interface to define parameters for OPAS

